A Comparative Study of Machine Learning Algorithms applied to Predictive Breast Cancer Data
نویسندگان
چکیده
Diagnostic errors are the most frequent non-operative medical errors. Diagnosis should be more data-driven than trial-anderror. Machine Learning provides techniques for classification and regression purposes which can be used for solving diagnostic problems in different medical domains. Predictive analysis of fatal ailments like cancer using existing data can serve as a diagnosis tool for doctors. The paper aims at a comparative study of Machine Learning algorithms on a predictive breast cancer dataset. The algorithms used for comparison Artificial Neural Networks (ANN), k-Nearest Neighbors (kNN) and Bayesian Network Classifiers – are supervised learning algorithms used widely for classification purposes and are chosen for their diversity. Based on analysis of this data, Artificial Neural Networks are better at classification with 97.4% accuracy than kNN and Bayesian Classifiers.
منابع مشابه
Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملA New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملDeep learning-based CAD systems for mammography: A review article
Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...
متن کاملThe prediction of lymphedema via the combination of the selected data mining algorithms
Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...
متن کامل